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E F F E C T  OF V I S C O S I T Y  O N  T H E  C U R R E N T  L A Y E R S  E M E R G I N G  

U P O N  P R O P A G A T I O N  OF T H E  ALFVI~N P U L S E  IN A H Y P E R B O L I C  M A G N E T I C  F I E L D  

G. I. Dudn ikova  and  V. P. Z h u k o v  UDC 533.951 

The propagation of the Alfvgn pulse in the vicinity of the X-point in the presence of viscosity is 
studied for the first time. It is shown that, in contrast to the case of magnetosonic perturbation, 
where the dynamic viscosity ~ (the point is that we are dealing with dimensionless quantities), 
which is small compared to the magnetic plasma viscosity v, does not affect the flow, this 
influence is of primary importance in the Alfvgn case. The magnitude of the steady-state 
current density is proportional to (vrt) -1/4. It is also shown that at large times the distribution 
of the z-component of a magnetic field that is close to the distribution obtained in solving a 
linear problem is established in this significantly nonlinear problem. The effect of the heat 
conduction on this process is studied. 

In t roduc t ion .  It is known that the process of magnetic-field perturbation propagation undergoes 
significant changes when these perturbations approach the vicinity of the singularities of a magnetic field. In 
particular, current layers, in which the perturbation energy converts to the thermal and kinetic energy of the 
macroscopic plasma motion and the energy of fast particles, appear. The most interesting transformation of 
the perturbations occurs immediately near the zero lines (points and surfaces); in this connection, the studies 
[1-9] give results of the numerical and analytical investigations of the problem, which has the following 
mathematical formulation. Located in a hyperbolic magnetic field, the quiescent plasma occupied a square 
region. The motion was assumed to be two-dimensional (O/Oz = 0). The waves generated by a remote source 
were modeled by specifying various perturbations of a magnetic field at the boundary of the region. The 
conditions that permit the plasma to flow in and out from this computational domain were established at its 
boundary. 

The problem posed is studied in detail for the case of a magnetosonic pulse, when the motion is initiated 
by the perturbation of the z-component of the vector-potential of the magnetic field A at the boundary of 
the region. The results of calculations agree with analytical estimates and experimental data [1-7, 9]. In 
particular, the effect of the viscosity r/on the processes of reconnection was discussed in [5, 10]. The analytical 
estimates presented in these studies and the unpublished results of the calculations performed with the use of 
the algorithms tested [9] for this problem make it possible to state that  the dimensionless dynamic viscosity 
7/, which is small compared to the dimensionless magnetic viscosity v, almost does not affect the flow, and 
the z-component of the current density is equal to j ,  ~ v -I/2. 

It is noteworthy that the majority of reconnection studies deal with flows in which the plasma velocity 
and the magnetic-field perturbations lie in the plane perpendicular to the zero line, i.e., the flows are of 
magnetosonic type. These flows occur in the most promising traps for thermonuclear fusion: tokamaks and 
stellarators. There are also studies in which three-dimensional MHD flows [11] and flows in which the plasma 
is described by kinetic equations [12] are modeled. 
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In the space plasma, for example, in the plasma of the solar corona, flows in which there exist a velocity 
component and magnetic-field perturbations parallel to the zero line, i.e., Alfv~n perturbations, play a great 
role. It was shown in [4, 13] that, in this case, the current layers along the separatrix surfaces separating 
independent magnetic fluxes can form. In contrast to the magnetosonic case, the current in these layers flows 
perpendicularly to the zero line along the separatrix surfaces. The specification of the z-component of the 
magnetic field H~ at the perturbation boundary corresponds to the propagation of the Alfv~n pulse. 

In this study, the mathematical formulation of the problem and results of the solution of the linear 
problem and the complete system of nonlinear equations are given. 

1. Fo rmula t ion  of  t h e  Problem.  In commonly accepted dimensionless variables, the initial equa- 
tions of single-fluid magnetic hydrodynamics have the form [1, 6-9] 

OA OHz 
0---t- + (VV)A = ,AA,  0--"t- + div (VHz) = (HV)V~ + ,AH~, 

+ = - r/kAV Vdiv V), 

p + (VV)Vz = (HV)H~ + 71AVz, 0-7 + div (pV) = O, 
(1.1) l (Op ) 

3' - 10 -~  + div (Vp) = div (xVT) - pdiv (V) + v((VH.) 2 + (AA) 2) + vQ, 

(ovy 2 (or. 
Q = 2 k k O x ]  + \ O y ]  ) + \ - - ~ y  + 

T =  P,p H =  ( Hx, Hy) = ( O_~y, 

OVy~2 [0V~2 [0V~2 2 (divV)2, 
Ox] + \ O x ]  + \ O y ]  - 3  

a A  , V = (V~, Vy),  3` = ~ .  

Here A is the z-component of the vector-potential of the magnetic field. The initial conditions correspond 
to the stationary solution of these equations: A = Ao = (x 2 - y2)/2 (X point), Hz = 0, p =/3, p = 1, and 
V=O.  

We dwell upon the boundary conditions. As in [4-8], for the velocities Vx and Vy at the boundary of 
the computatioual domain - 1  < x < 1, -1  < y < 1 the conditions OVx,y/On = 0 (n  is the normal to the 
boundary) were chosen. In this work, for Vz, instead of the zero normal derivative as in [4-8], the gradient 
along a magnetic field was taken to be zero: 

(HV)V_. = 0. (1.2) 

Condition (1.2) was also set for Hz at the lateral (x = 4-1) boundaries. This is connected with the fact that, 
according to the meaning of the problem, the Alfv~n wave arrives from infinity along the field H.  

The vector-potential A was assumed to be unchanged in time at the boundary; here the perturbation 
H~ for y = =kl had the form 

H~(x, y = 4-1) = =l=H1 min(t/ts, 1), (1.3) 

i.e., H.. increased from zero to H1 for ts at the boundary. 
In [4-8], the normal derivatives of p and p were set equal to zero if the plasma flows out from the 

computational domain through the given section of the boundary. Otherwise, p and p were assumed to be 
equal to their undisturbed values/3 and 1. This condition results in the following undesirable effect. At large 
times, an almost equilibrium configuration, in which the plasma velocity V is small and the pressure is much 
greater than the initial pressure, is formed. Therefore, when the direction of the velocity becomes opposite, 
the pressure changes abruptly at the boundary even for a small absolute value of the velocity. In view of 
this, for the quantities considered we imposed the conditions for the fluxes of these magnitudes, namely, 
if the velocity at the boundary is directed inward the computational domain, then (Vn)p = (Vn)~ and 
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(Vn)p  = (Vn) .  Otherwise, in the expressions (Vn)p  and (Vn)p, the values of p and p were assumed to 
be equal to their values in the near-boundary computational cell. Here the flux at the boundary, which is 
connected with dissipation in the pressure equation, was assumed to be zero: x V T  = 0; this allowed us to 
avoid the difficulties mentioned above. 

Owing to the symmetry,  the problem posed can be solved in a quarter of the domain. For numerical 
solution, an explicit first-order finite-difference scheme, which was treated in [9], was employed. 

2. L i n e a r  P r o b l e m .  We consider the propagation of the Alfv~n pulse in a linear approximation, 
assuming that  the poloidal field H does not depend on time, and H~ and V~ are described by the equations 

ov. 
OH~ot - (H~7)V~ + ,AHz ,  p ~ = (H~7)H~ + 7?AVz (p = const ). (2.1) 

The boundary conditions have the form (1.2), (1.3). 
It is dear  tha t  the stationary distribution of H~ is approximately the following: 

H ~ = H 1  for y > l x l ,  H ~ = - H 1  for y < - I x l ,  H ~ - - 0  for I x l > l y t .  (2.2) 

The distribution of H~ in the neighborhood of the line Ix[ = lY[ will be smeared out under the influence 
of 77 and v. After the replacement V~ = V/ '~V~. ,  one can see that the stat ionary solution of system (2.1) 
depends on only one parameter v~?. Assuming that  H ~  ,.- 1 and A .-, 1-2 (l is the layer thickness), we obtain 
the estimate 1 ~ (~)1/4  and, hence, j •  ~ H1/l ~ H1/(v1?) 1/4. For small vrl, this dependence is supported 
by calculations. At the stat ionary stage, at large times, the poloidal current is maximal on the zero line (at 
the center of coordinates) and equals 9 for v~ -- 5 �9 10 -5 and 4.3 for ~7 = 10 -4. In this case, it was assumed 
that Hi = 0.5. 

Let us consider the case ~ = 0. According to (2.1), the stationary equation for V~ can have the solution 
only if H.  is constant along a magnetic field. Along the force lines tha t  do not intersect the x axis, this 
condition can, in principle, be satisfied. However, the lines that intersect this axis connect the regions in 
which Hz has a different sign; as a result, this condition cannot be satisfied for them. Calculations show 
that, for ~? = 0, solution (2.1) tends to the discontinuous solution (2.2). Accordingly, the current increases 
unboundedly with time. 

3. N o n l i n e a r  P r o b l e m .  In the case of the complete system (1.1), the flow pattern is as follows. An 
Alfv~n-type perturbation wave of the magnetic field Hz propagates from the boundaries y = 4.1 to the zero 
line (the center of coordinates) along the force lines of the magnetic field. At distances from the center of 
coordinates at which the strength of the background poloidal field is comparable, in order of magnitude, with 
the strength of H:  in the wave (r ~ H1), the flow becomes significantly nonlinear. Under the action of the 
magnetic pressure H2/2, the plasma moves to the x axis, deforming the poloidal magnetic field. As a result, 
a layer of the current z-component elongated along the x axis appears (Fig. 1). A layer of poloidal current 
j •  = (-OHz/Oy, OH~/Ox) also appears, whose vector field is shown in Fig. 2. The values of jz and j •  in 
these layers can be much greater than their values at the quasistationary stage; a situation where IJ~l ~> IJ• 
can arise. At the quasistationary stage, we have IJ• <~ IJ~l. In these layers, the density and pressure of the 
plasma will also increase. 

The current layers shown in Fig. I and 2 are greatly nonstationary. Owing to ohmic heating, the plasma 
pressure in the layer increases, and a gas-kinetic pressure wave, which propagates along a magnetic field to the 
boundaries x --- 4.1, arises. For lYl > Ixl, the motion of this wave toward the boundaries y = 4-1 is hindered 
by the field H~ whose pressure is high (of the order of H2). As a result, at large times a quasistationary 
configuration in which p + 1t2/2 .~ const is established. Figure 3 shows the distribution of 112/2 at large 
times. Since now the excess pressure of the field Hz is compensated by the gas-kinetic pressure, rather than 
the deformation of the poloidal field, the current layer j~ disappears. We have j~ --. 0 as t --* c~. The vector 
field j •  is shown in Fig. 4. The layer j •  is located along the lines [Yl --- Ix], and IJ• reaches the maximum 
at the center of the region. The value of this maximum is denoted by j ~ .  The velocity is V --, 0 as t --~ c~. 

Since V is small a t  the quasistationary stage and A ~ A0, the distribution of Vz and H~ is close to 
that  obtained in the solution of the linear system (2.1); it is determined by the parameters ~, and 77. At large 
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times, the dependence of Vz and Hz on the parameters ts (1.3), /3,  and X is weak. The independence of the 
quasistationary mode on t~ is connected with the fact that we consider the solution of the problem for t >> ts. 
We note that  the time of reaching a stationary regime by the solution is several hundred times the Alfv~n 
time and depends not only on the product t/~7, but also on the relation between them�9 The weak effect of 
13 is due to intense ohmic plasma heating�9 The plasma temperature grows even at the quasistationary stage 
and is much greater than the initial temperature. The weak dependence of the magnetic-field and pressure 
distributions on the thermal conduction is less obvious at large times. Here, since the effect of X on the 
temperature is great, the density distribution should change accordingly�9 Figures 5 and 6 show the typical 
density distribution for X << v and X/> ~', respectively. It is noteworthy that a similar phenomenon is also 
observed in the case of a magnetosonic pulse. 

We give examples of some calculations. For H1 = 0�9 0.02 </3 < 0.5, 0.005v < X < 2u, and v = 0.005 
and 7? -- 0.001 or u = 0.001 and r / - -  0.005, the calculated values of j ~  vary from 8.6 to 9.1. For the same 
values, the solution of the linear problem (2.1) gives j ~  = 9. For v = 7) = 0.01, the numerical calculations 
yield j ~  --- 4.3; this is in agreement with the solution of the linear problem. Thus,  the distribution of the 
poloidal current in a quasistationary mode in the significantly nonlinear problem is close to its distribution 
in the linear case. 

For small values of w?, from the calculations follows the dependence 

joo .~ CHl(vzl) -1/4, (3.1) 

where C ,~ 100. 
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In the case U = 0, for v = 0.1, X = 0.02, and H1 = 0.5 the quantity j •  exceeds 8. For the same values 
of ~ and X but for 77 = 0.001, the quantity IJ• ~< joo ~ 4.3, which corresponds to the dependence, (3.1). 
Note that, for 77 = 0, the distribution of the poloidal current does not reach a stationary distribution for 
any parameters of tile problem. For example, for small thermal conduction, an intense plasma outflow from 
the computational domain is observed; as a result, the plasma falls off by several orders of magnitude. The 
current distribution here is far from stationary. 

Conclusions.  We have shown that the viscosity exerts a great effect on the value of the current in the 
problem considered. The distribution of Hz is close to that obtained in the solution of the linear problem, 
and the dependence p § 1t2/2 .~ const holds for the pressure profile. 

This work was partially supported by INTAS (Grant No. 96-0456) and the Russian Foundation for 
Fundamental Research (Grant No. 98-02-17115a). 
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